Structural basis of efficient electron transport between photosynthetic membrane proteins and plastocyanin in spinach revealed using nuclear magnetic resonance.

نویسندگان

  • Takumi Ueda
  • Naoko Nomoto
  • Masamichi Koga
  • Hiroki Ogasa
  • Yuuta Ogawa
  • Masahiko Matsumoto
  • Pavlos Stampoulis
  • Koji Sode
  • Hiroaki Terasawa
  • Ichio Shimada
چکیده

In the photosynthetic light reactions of plants and cyanobacteria, plastocyanin (Pc) plays a crucial role as an electron carrier and shuttle protein between two membrane protein complexes: cytochrome b(6)f (cyt b(6)f) and photosystem I (PSI). The rapid turnover of Pc between cyt b(6)f and PSI enables the efficient use of light energy. In the Pc-cyt b(6)f and Pc-PSI electron transfer complexes, the electron transfer reactions are accomplished within <10(-4) s. However, the mechanisms enabling the rapid association and dissociation of Pc are still unclear because of the lack of an appropriate method to study huge complexes with short lifetimes. Here, using the transferred cross-saturation method, we investigated the residues of spinach (Spinacia oleracea) Pc in close proximity to spinach PSI and cyt b(6)f, in both the thylakoid vesicle-embedded and solubilized states. We demonstrated that the hydrophobic patch residues of Pc are in close proximity to PSI and cyt b(6)f, whereas the acidic patch residues of Pc do not form stable salt bridges with either PSI or cyt b(6)f, in the electron transfer complexes. The transient characteristics of the interactions on the acidic patch facilitate the rapid association and dissociation of Pc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct simulation of plastocyanin and cytochrome f interactions in solution.

Most biological functions, including photosynthetic activity, are mediated by protein interactions. The proteins plastocyanin and cytochrome f are reaction partners in a photosynthetic electron transport chain. We designed a 3D computer simulation model of diffusion and interaction of spinach plastocyanin and turnip cytochrome f in solution. It is the first step in simulating the electron trans...

متن کامل

Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi. IV. Purification and Properties of Plastocyanin.

The copper protein plastocyanin has been found to be an essential component of the photosynthetic electron transport chain of Chlamydomonas reinhardi, and in this paper we describe a method for its isolation and purification from the wild-type strain. In addition, we describe some of its properties and compare them with those reported for spinach plastocyanin.The plastocyanin was extracted from...

متن کامل

The effect of an antiserum to plastocyanin on various chloroplast preparations.

A monospecific antiserum to tobacco plastocyanin agglutinates stroma-free swellable chloroplasts from wild type tobacco, (Nicotiana tobacum var. John William's Broadleaf) from the tobacco aurea mutant Su/su2, (Nicotiana tabacum var. Su/su2) from Antirrhinum majus and spinach (Spinacia oleracea). In this condition the antiserum inhibits linear photosynthetic electron flow in tobacco and spinach ...

متن کامل

Effects of disalicylidenepropanediamines on photosynthetic electron transport of isolated spinach chloroplasts.

The effects of disalicylidenepropanediamine (DSPD) and disulfo-disalicylidenepropanediamine (sulfo-DSPD) on the photosynthetic electron transport of isolated chloroplasts have been reexamined.Our data suggest that DSPD, but not sulfo-DSPD, is an effective inhibitor of electron transport between photosystem II and photosystem I before or at plastocyanin. Furthermore, both DSPD and sulfo-DSPD blo...

متن کامل

Plastocyanin as the possible site of photosynthetic electron transport inhibition by glutaraldehyde.

Treatment of spinach chloroplasts with glutaraldehyde causes an inhibition in the electron transport chain between the two photosystems. Measurements of O(2) flash yields, pH exchange, and fluorescence induction show that the O(2) evolving apparatus, photosystem II and its electron acceptor pool are not affected. The behavior of P700 indicates that its reduction but not its oxidation, is severe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 10  شماره 

صفحات  -

تاریخ انتشار 2012